Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The Ediacaran Gametrail Formation of northwestern Canada chronicles the evolution of a complex carbonate ramp system in response to fluctuations in relative sea level and regional tectonic subsidence alongside exceptional global change associated with the Shuram carbon isotope excursion (CIE). Here, we use extensive outcrop exposures of the Gametrail Formation in the Wernecke Mountains of Yukon, Canada, to construct a shelf-slope transect across the Shuram CIE. Twelve stratigraphic sections of the Gametrail Formation are combined with geological mapping and a suite of geochemical analyses to develop an integrated litho-, chemo-, and sequence stratigraphic model for these strata. In the more proximal Corn/Goz Creek region, the Gametrail Formation represents a storm-dominated inner to outer ramp depositional setting, while slope depositional environments in the Nadaleen River region are dominated by hemipelagic sedimentation, turbidites, and debris flows. The magnitude of the Shuram CIE is largest in slope limestones which underwent sediment-buffered diagenesis, while the CIE is notably smaller in the inner-outer ramp dolostones which experienced fluid-buffered diagenesis. Our regional mapping identified a distinct structural panel within the shelf-slope transect that was transported ~30 km via strike-slip motion during the Mesozoic–Cenozoic Cordilleran orogeny. One location in this transported structural block contains a stromatolite reef complex with extremely negative carbon isotope values down to ~ -30‰, while the other location contains an overthickened ooid shoal complex that does not preserve the characteristic negative CIE associated with the Shuram event. These deviations from the usual expression of the Shuram CIE along the shelf-slope transect in the Wernecke Mountains, and elsewhere globally, provide useful examples for how local tectonic, stratigraphic, and/or geochemical complexities can result in unusually large or completely absent expressions of a globally recognized CIE.more » « less
-
null (Ed.)The age and nature of the Neoproterozoic – early Paleozoic rift–drift transition has been interpreted differently along the length of the North American Cordillera. The Ediacaran “upper” group (herein elevated to the Rackla Group) of the Coal Creek inlier, Yukon, Canada, represents a key succession to reconstruct the sedimentation history of northwestern Laurentia across the Precambrian–Cambrian boundary and elucidate the timing of active tectonism during the protracted breakup of the supercontinent Rodinia. These previously undifferentiated late Neoproterozoic – early Paleozoic map units in the Coal Creek inlier are herein formally defined as the Lone, Cliff Creek, Mount Ina, Last Chance, Shade, and Shell Creek formations. New sedimentological and stratigraphic data from these units is used to reconstruct the depositional setting. In the Last Chance Formation, chemostratigraphic observations indicate a ca. 5‰ δ 13 C carb gradient coincident with the globally recognized ca. 574–567 Ma Shuram carbon isotope excursion. Map and stratigraphic relationships in the overlying Shell Creek Formation provide evidence for latest Ediacaran – middle Cambrian tilting and rift-related sedimentation. This provides evidence for active extension through the Cambrian Miaolingian Series in northwestern Canada, supporting arguments for a multiphase and protracted breakup of Rodinia.more » « less
-
null (Ed.)Abstract Detrital zircon U-Pb geochronology is one of the most common methods used to constrain the provenance of ancient sedimentary systems. Yet, its efficacy for precisely constraining paleogeographic reconstructions is often complicated by geological, analytical, and statistical uncertainties. To test the utility of this technique for reconstructing complex, margin-parallel terrane displacements, we compiled new and previously published U-Pb detrital zircon data (n = 7924; 70 samples) from Neoproterozoic–Cambrian marine sandstone-bearing units across the Porcupine shear zone of northern Yukon and Alaska, which separates the North Slope subterrane of Arctic Alaska from northwestern Laurentia (Yukon block). Contrasting tectonic models for the North Slope subterrane indicate it originated either near its current position as an autochthonous continuation of the Yukon block or from a position adjacent to the northeastern Laurentian margin prior to >1000 km of Paleozoic–Mesozoic translation. Our statistical results demonstrate that zircon U-Pb age distributions from the North Slope subterrane are consistently distinct from the Yukon block, thereby supporting a model of continent-scale strike-slip displacement along the Arctic margin of North America. Further examination of this dataset highlights important pitfalls associated with common methodological approaches using small sample sizes and reveals challenges in relying solely on detrital zircon age spectra for testing models of terranes displaced along the same continental margin from which they originated. Nevertheless, large-n detrital zircon datasets interpreted within a robust geologic framework can be effective for evaluating translation across complex tectonic boundaries.more » « less
-
The rise of animals occurred during an interval of Earth history that witnessed dynamic marine redox conditions, potentially rapid plate motions, and uniquely large perturbations to global biogeochemical cycles. The largest of these perturbations, the Shuram carbon isotope excursion, has been invoked as a driving mechanism for Ediacaran environmental change, possibly linked with evolutionary innovation or extinction. However, there are a number of controversies surrounding the Shuram, including its timing, duration, and role in the concomitant biological and biogeochemical upheavals. Here we present radioisotopic dates bracketing the Shuram on two separate paleocontinents; our results are consistent with a global and synchronous event between 574.0 ± 4.7 and 567.3 ± 3.0 Ma. These dates support the interpretation that the Shuram is a primary and synchronous event postdating the Gaskiers glaciation. In addition, our Re-Os ages suggest that the appearance of Ediacaran macrofossils in northwestern Canada is identical, within uncertainty, to similar macrofossils from the Conception Group of Newfoundland, highlighting the coeval appearance of macroscopic metazoans across two paleocontinents. Our temporal framework for the terminal Proterozoic is a critical step for testing hypotheses related to extreme carbon isotope excursions and their role in the evolution of complex life.more » « less
An official website of the United States government
